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Abstract. Concurrent multithreaded architectures exploit both instruction-
level and thread-level parallelism in application programs. A single-threaded 
sequencing mechanism needs speculative execution beyond conditional 
branches in order to exploit more instruction-level parallelism. In addition, 
an aggressive multithreaded architecture should also use thread-level control 
speculation in order to exploit more thread-level parallelism. The instruction- 
and thread-level speculative execution of load instructions in a multithreaded 
architecture system has a greater impact on the performance of the cache 
hierarchy as the design becomes more aggressive using wider issue 
processors and more thread units. In this study, we investigate the effects of 
executing the mispredicted load instructions on the cache performance of a 
scalable multithreaded computer system. The execution of loads down the 
wrongly predicted branch path within a thread unit or in a wrongly forked 
thread can result in an indirect prefetching effect for correct execution. This 
is possible even after the outcome of a control speculation is known. By 
allowing mispredicted load instructions to continue execution even after the 
instruction or thread level control speculation is known to have failed, we 
show that we can reduce the cache misses for the correctly predicted paths 
and threads. However, these additional loads also can increase the amount of 
memory traffic and can pollute the cache. Our results show that the 
performance of a concurrent multithreaded architecture can be improved as 
much as 14%, while reducing the number of L1 data cache misses up to 35%.  
 
1 Introduction 
 
A concurrent multithreaded architecture [1] consists of a number of 
thread processing elements (superscalar cores). In each superscalar 
processor core, in order to achieve high issue rate, instructions are 
speculatively executed beyond basic block-ending conditional 
branches until the branches are resolved. If the prediction was 
incorrect, the processor state must be restored to the state prior to the 
predicted branch and execution must be restarted down the correct 
path. Similarly, to increase the amount of overlap between executing 
threads, a concurrent multithreaded architecture must aggressively 
fork speculative successor threads.  If any of the speculated control 
dependences are subsequently found to be false, the thread must kill 
all the successor threads. With both instruction- and thread-level 
control speculation, a multithreaded architecture allows many 
memory references to be issued which turn out to be unnecessary 
since they are issued from a mispredicted branch path or a 
mispredicted thread. However, these incorrectly issued memory 
references may produce an indirect prefetching effect by bringing 
data or instruction lines into the cache that are needed later by the 
execution paths for the correct threads. Unfortunately, these 
additional loads also will increase the memory traffic and may 
pollute the cache. 

Existing superscalar processors with deep pipelines and 
wide issue units do allow memory references to be issued 
speculatively down wrongly predicted branch paths. This work, 
however, proposes to go one step further and examine the effects of 
continuing to execute the loads down the mispredicted branch path 

even after the branch is resolved. These instructions are marked as 
being from the mispredicted branch path so that later they can be 
squashed without altering the target register. In this manner, the 
processor can continue accessing memory with loads that are known 
to be from the wrong branch path. At the thread-level, control 
speculation allows speculative execution of threads. The load 
instructions issued before the speculation is cleared can affect the 
cache behavior. In this work, the wrongly predicted threads are 
allowed to execute instead of being killed.  They are marked as 
wrong threads and are killed when a thread finds itself to be wrongly 
predicted, or the next parallel region needs to be started. As a result, 
the wrong threads’ execution is overlapped with the execution of the 
sequential code. This continued execution of incorrectly speculated 
threads allows more loads to be executed than would execute if the 
threads were killed at the earliest point at which they are known to 
be incorrect. 

Although this technique issues load instructions very 
aggressively to produce a significant impact on cache behavior, it 
has little impact on the implementation of the processor's pipeline 
and control logic. The execution of wrong-path or wrong-thread 
loads can make a significant performance improvement with very 
low overhead when there exists a large disparity between the 
processor cycle time and the memory speed.  However, executing 
these loads can reduce performance in systems with small data 
caches and low associativities due to cache pollution. 

The remainder of the paper is organized as follows. 
Section 2 presents an overview of SuperThreaded Architecture [2, 8] 
(STA), which is the concurrent multithreaded architecture used for 
this study. Section 3 describes the idea of wrong execution. The 
experimental methodology is described in Section 4 with the results 
given in Section 5. Section 6 discusses some related work and 
Section 7 concludes. 
 
2 The SuperThreaded Architecture (STA)  
 
2.1 Architecture Model 
 
In its general form, the superthreaded architecture (STA) consists of 
multiple thread processing units. Each unit is connected to its 
successor by a unidirectional ring, as shown in Figure 1. The thread 
processing units share the second-level (L2) instruction and data 
cache. Each unit has a private level-one instruction cache, private or 
shared level-one data cache, program counter, register file, and 
execution unit. There also is a shared register file that maintains 
some global data registers and lock registers. A private memory 
buffer is used in each thread processing unit to cache speculative 
stores to support run-time data dependence checking. 

When multiple threads are executing on the STA, the 
oldest thread in the sequential order is called the head thread. All 



other threads derived from it are called successor threads. The 
program execution starts from its entry thread while all other thread 
units are idle. When a parallel code region is encountered, this 
thread activates its downstream thread by forking. This forking 
continues until no thread unit is idle. Then, the youngest thread 
waits to fork until the head thread retires and the thread unit on 
which it was executing become idle. As soon as the head thread 
retires, a new thread is activated. This cycle of idle-active-execute-
idle continues until the end of parallel region  
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Figure 1. The STA with four threads units. 

 
2.2 Thread Pipelining Execution Model 
 
The execution model for the STA is thread pipelining. This 
execution model allows threads with data and control dependences 
to be executed in parallel. Instead of speculating on data 
dependences, it facilitates run-time data dependence checking for 
load instructions. Thus, it avoids the squashing caused by data 
dependence violations and reduces the hardware complexity of 
detecting memory dependence violations compared to some prior 
CMA models [4], [5]. As shown in Figure 2, the execution of a 
thread is partitioned into the continuation stage, the target-store 
address-generation (TSAG) stage, the computation stage, and the 
write-back stage. 

The main function of the continuation stage is to compute 
recurrence variables (e.g. loop index variables), and to fork a new 
thread on the next thread-processing element. This stage ends with a 
fork instruction, which forwards the recurrence variables, as well as 
the target store addresses and data received from the predecessor 
threads, to the next thread. A thread can fork a successor thread with 
or without speculation. If the speculation is ultimately determined to 
be incorrect, the thread will issue an abort instruction to kill the 
successor threads. The continuation stages of two adjacent threads 
can never overlap.  

The TSAG stage performs address computations for those 
stores that may have data dependences on later concurrent threads. 
These stores, which are called target stores, are identified through a 
conventional data dependence analysis. The computed addresses are 
stored in a special memory buffer in each thread unit and forwarded 
to the memory buffers of all succeeding concurrent thread units. 

The computation stage contains the computation from the 
body of the loop. Reads of data that have cross-iteration 
dependences are checked against the addresses and values in the 
memory buffer. If valid data has not yet arrived from an upstream 

thread, the out-of-order STA core will execute instructions that are 
independent of the load that is waiting for the upstream data. 

In the write-back stage, all the data  in the memory buffer, 
including the values of the target stores, will be committed and 
written to the cache. The write-back stages are performed in the 
original program order to preserve the non-speculative memory state 
and to eliminate output and anti-dependences between threads. After 
performing the write-back stage, a thread-processing unit can retire 
the thread.  It then becomes idle until it is again scheduled with a 
new thread.  
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Figure 2. Thread pipelining execution model. 

 
2.3 Compilation process for superthreaded code 
 
All the benchmarks in this study were parallelized manually. First, 
the gprof tool from the GNU suite of Unix tools was used to gather a 
function-level execution profile. Since these profiles do not provide 
loop-level details, tcov, also from the GNU suite of Unix tools, was 
used to gather profiles for basic blocks. After choosing the most 
time-consuming loops in each program, the special superthreaded 
instructions are inserted by hand to parallelize those loops. The GCC 
compiler from the Simplescalar suite of tools was used to compile 
the superthreaded programs.  The compiler was modified to 
transform function calls to jump-to-label instructions. A special-
purpose  parser then was used to replace the function calls with the 
superthreaded instructions. Finally, the superthreaded assembly code 
is fed into the Simplescalar GAS assembler and GAD loader to 
produce the executable binary code.  Figure 3 shows the complete 
compilation process.  
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Figure 3. The compilation process for producing superthreaded code. 
 
3 Wrong Execution on the STA 
 
There are two types of wrong execution that can occur in a 
concurrent multithreaded architecture such as the superthreaded 
architecture.  The first type occurs when instructions continue to be 
issued down the path of what turns out to be an incorrectly-predicted 
conditional branch instruction within a single thread.  We refer to 
this type of execution as wrong path execution.  The second type of 
wrong execution occurs when instructions are executed from a 
thread that was speculatively forked, but is subsequently aborted.  
We refer to this type of incorrect execution as wrong thread 



execution.  Our interest in this study is to examine the effects on the 
memory hierarchy of load instructions that are issued from both of 
these types of wrong executions. 
 
3.1. Wrong Path Execution 
 
Loads on wrongly predicted branches that are not ready to be issued 
before the branch is resolved, either because they are waiting for the 
effective address calculation or for an available memory port, are 
issued to the memory system if they become ready after the branch 
is resolved, even though they are known to be from the wrong path. 
Instead of being squashed after the branch is resolved, they are 
allowed to access the memory.  These instructions are marked as 
being from the mispredicted branch path when they are issued so 
they can be squashed in the write-back stage of the processor 
pipeline to prevent them from altering the destination register after 
they access the memory system. Note that a wrong-path load that is 
dependent upon another instruction that gets flushed after the branch 
is resolved also is flushed in the same cycle. In this manner, the 
processor is allowed to continue accessing memory with loads that 
are known to be from the wrong branch path. No store instructions 
are allowed to alter the memory system, however, since they are 
known to be invalid. The stores that are known to be down the 
wrong path after the branch is resolved are not executed thereby 
eliminating the need for an additional speculative write buffer. 
 An example showing the difference between speculative 
and wrong-path execution is given in Figure 4. In this example, 
there are five loads (A, B, C, D, and E) fetched down the predicted 
path. Loads A and B become ready and are issued to the memory 
system speculatively before the branch is resolved. After the branch 
result is known to be wrong, the other three loads, C, D and E, are 
squashed before being able to access the memory system. In a 
system with wrong-path execution, however, loads, which become 
ready, are allowed to continue execution (loads C and D in Figure 4) 
in addition to the speculatively executed loads (loads A and B). 
Since they are marked as being from the wrong-path, loads C and D 
are squashed later in the pipeline so that they will not alter the 
destination register. Since load E is not ready to execute by the time 
the branch is resolved, it is squashed as soon as the branch result is 
known. 
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Figure 4. The difference between speculative and wrong-path execution. 
 
3.2 Wrong Thread Execution 
 
The superthreaded execution model must be changed to support 
wrong thread execution. As described in Section 2, when a thread 
determines that the iteration it is executing satisfies the loop exit 
condition, it executes an abort instruction to kill all the successor 
threads. In this study, however, instead of killing them, the 

successor threads are marked as wrong threads when the head 
thread executes an abort. These specially marked threads are not 
allowed to fork new threads, yet they are allowed to continue 
execution. As a result, after this parallel region finishes, the wrong 
threads continue execution in parallel with the following sequential 
code. Later, when the wrong threads attempt to execute their own 
abort instructions, they kill themselves before their write-back 
stages.  

If the sequential region between two parallel regions is not 
long enough for the wrong threads to determine that they are to be 
aborted before the beginning of the next parallel region, the begin 
instruction that initiates the next parallel region will abort all of the 
still-executing wrong threads from the previous parallel region so 
that the head thread is able to fork without stalling. Since each 
thread’s store data is put in a speculative memory buffer, and since 
wrong threads cannot execute their write-back stages, no wrong 
thread store data alters any data in the cache. The loads from wrong-
thread execution will bring data from lower levels of the memory as 
in wrong-path execution and may have an indirect prefetching effect 
for later correct threads. However, these wrong-thread loads can 
pollute the cache as well. Figure 5 shows the wrong thread 
execution model with four thread units. Although wrong-path and 
wrong-thread execution has similarities, the main difference 
between them is that, once a branch is resolved, the loads that are 
not yet ready to execute on a wrong path are squashed, while wrong-
thread loads are allowed to continue their execution. 
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Figure 5. Wrong thread execution model with four thread units 
 
4. Experimental Methodology 
 
This study uses SIMCA [7] (SImulator for Multithreaded Computer 
Architecture) to model the performance effects of wrong-execution 
on the superthreaded architecture. This simulator is based on version 
3.0 of SimpleScalar’s sim-outorder  functional and timing simulator 
[9]. 

For all of the simulations in this study, each thread unit 
uses a 4-way associative branch target buffer of 1024 entries and a 
fully associative memory buffer of 128 entries. Distributed L1 
instruction caches are each 32KB, 2-way associative. The default 
unified L2 cache is 512KB, 4-way associative with a block size of 
128 bytes, unless explicitly mentioned otherwise. The L1 and L2 
cache latencies are 1 and 12 cycles, respectively. The round-trip 
memory latency on a cache miss is 200 cycles. 



The time required to initiate a new thread (the fork delay) 
in the superthreaded architecture includes the time required to copy 
all of the needed global registers to a newly spawned thread’s local 
register file and the time required to forward the program counter 
and the necessary target-store addresses from the memory buffer. 
We use a fork delay of four cycles [2] in this study plus two cycles 
per value to transfer data between threads after a thread has been 
forked.  
 
 4.1. Benchmark Programs 
 
Four SPEC2000 integer benchmark programs  (gzip, vpr, parser, 
mcf) and two SPEC2000 floating point benchmark programs 
(equake, mesa) are evaluated in this study. All of them are written in 
C.  

Some simple complier techniques were used during the 
parallelization of these benchmark programs, as summarized in 
Table 1. Each benchmark was compiled with the O3 optimization 
level and run to completion. To keep the simulation times 
reasonable, the MinneSPEC [11] reduced input sets were used for 
several of the benchmark programs, as shown in Table 2. This table 
also shows the fraction of the code that was parallelized for each 
program.  
 
Table 1. Program transformations used in manually transforming the code to 
the thread-pipelining execution model.  
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Table 2. The dynamic instruction counts of the benchmark programs used in 
this study, and the fraction of these instructions that were executed in 
parallel.  
 

 
4.2. Processor Configurations 
 
The following STA configurations were simulated to determine the 
performance impact of executing wrong-path and wrong-thread 
loads.  

orig: This is the baseline STA explained in the previous 
sections. Note that the STA allows speculative execution of loads 
until the control speculation result is known. The results for these 
loads are speculatively put in the L1 data cache. After the 
misprediction is known, the processor state is restored to the state 
prior to the predicted branch. The execution then is restarted down 
the correct path. In addition, the forking thread immediately kills 
wrong threads after the speculation is cleared. 

wp: This configuration adds more aggressive speculation 
to a thread unit’s execution. The processor allows as many fetched 

loads as possible to access the memory system regardless of the 
predicted direction of conditional branches. This configuration is a 
good test of how the execution of the loads down the wrong branch 
path affects the memory system. Note that, in contrast to the orig 
configuration, the loads down the mispredicted branch direction are 
allowed to continue execution even after the branch is resolved. 
However, they are squashed before being allowed to write to the 
destination register. Wrong-path stores are not allowed to execute in 
this configuration to eliminate the need for an additional speculative 
write buffer. Stores are squashed as soon as the branch result is 
known. The thread-level speculation, however, remains the same as 
in configuration orig. 

wth: This configuration is described in detail in Section 
3.2. To summarize, a speculatively forked thread is allowed to 
continue execution even after it is known to be mispredicted. Wrong 
threads are squashed before they reach their write-back stage of the 
thread-execution pipeline to prevent wrongly executed loads from 
altering the target register after they access the memory system. 
Since each thread’s store data is put in a private local memory buffer 
during a thread’s execution, and wrong threads cannot execute their 
write-back stages, no wrong thread store data alters the cache. The 
speculative load execution within a thread unit (i.e., the superscalar 
core) remains the same as in the orig configuration. 

wth-wp: This is a combination of the wp and wth 
configurations. 
 
5. Simulation Results  
 
The simulation results are presented as follows. First, the baseline 
performance of the STA is given. Next, the effects of wrong-thread 
and wrong-path execution on the performance of the superthreaded 
architecture are examined. Finally, several important memory 
system parameters are varied to determine the sensitivity of the 
system to these parameters. 

The overall execution time is used for the performance 
metric in this study. Average speedups are calculated by using the 
execution time weighted average of all of the benchmarks [10]. 

 
5.1 Baseline Performance of the STA  
 
The system parameters used to determine the amount of parallelism 
exploited in the benchmark programs used in this study, and to 
determine the baseline performance of the STA, are shown in Table 
3. The size of the distributed 4-way set-associative L1 data cache 
size is scaled from 2K to 32K as the number of threads is varied to 
keep the same total amount of L1 cache in the system. The processor 
of a single thread unit (1TU) corresponds to a superscalar processor 
that exploits only instruction-level parallelism. The 16TU 
configuration, on the other hand, corresponds to a superthreaded 
architecture that can issue only a single instruction per cycle within 
each thread unit. Thus, this configuration exploits only thread-level 
parallelism. The baseline for these initial comparisons is a single-
thread, single-issue processor that does not exploit any parallelism. 

 
Table 3. Simulation parameters used for each thread unit . 

 
# of TUs 
Issue rate 

1 
1 

1 
16 

2 
8 

4 
4 

8 
2 

16 
1 

Reorder buffer size 8 128 64 32 16 8 
INT ALU 1 16 8 4 2 1 
INT MULT 1 8 4 2 1 1 
FP ALU 1 16 8 4 2 1 
FP MULT 1 8 4 2 1 1 
L1 data cache size (K) 2 32 16 8 4 2 

 

Benchmark Suite/Type Input Set Whole 
Benchmark 
Instruction 
(M) 

Targeted 
loops 
Instruction 
(M) 

Fraction 
Parallelized 

164.gzip SPEC2000/INT MinneSPEC 
large   

1550.7 243.6 15.7% 

175.vpr SPEC2000/INT SPEC test 1126.5 97.2 8.6% 
197.parser SPEC2000/INT MinneSPEC 

med. 
514.0 88.6 17.2% 

181.mcf SPEC2000/INT MinneSPEC 
large 

601.6 217.3 36.1% 

183.equake  SPEC2000/FP MinneSPEC 
large 

716.3 152.6 21.3% 

177.mesa SPEC2000/FP SPEC test 1832.1 319.0 17.3% 



Figure 6 shows the amount of instruction- and thread-level 
parallelism in the parallelized portions of the benchmarks to thereby 
compare the superthreaded processor with a conventional processor. 
In the baseline simulations, 164.gzip shows high thread-level 
parallelism with a speedup of 14x for the 16TU X 1-issue 
configuration, while a 1TU X 16-issue processor gives a speedup 
less than 4x. The speedup of the parallelized portions of 175.vpr 
becomes worse as the number of threads is increased because 
175.vpr does not have much thread-level parallelism available. In 
the cases where the pure superscalar model achieves the best 
performance, the clock cycle time of this configuration is likely to 
be longer than the combined models or the pure superthreaded 
model since a 16-issue superscalar model must use a large 
instruction reorder buffer for dynamic instruction scheduling. 
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Figure 6. Performance for the transformed portion of superthreaded 
processors with the hardware configurations shown in Table 3. The baseline 
configuration is a single-thread, single-issue processor. 
 
5.2. Performance of the Superthreaded Architecture with 
Wrong-Path and Wrong-Thread Execution 
 
The overall speedups for the benchmarks under test when using 
wrong-path and wrong-thread execution are given in Figures 7 and 8 
for two and eight thread units (TUs), respectively. The speedups are 
given over the baseline (orig) configuration. In Figure 7, for two 
TUs, the wth-wp configuration can result in a 14% performance 
improvement (for 181.mcf).  This improvement is due to the 
reduction in the number of correct-path and correct-thread misses 
that occur by continuing to execute the mispredicted load 
instructions down the wrong-path and wrong-threads. Figure 8 
shows the percent reduction in the number of misses down the 
correct execution path (i.e., within the correctly predicted thread’s 
execution). We can see that for 181.mcf, wth-wp can reduce the 
number of misses in the L1 data cache by 35%. The average 
reduction in the number of L1 data cache misses over all of the 
benchmark programs is 12.6%.  

Figures 9 and 10 show the speedup and miss reduction 
results for eight TUs, respectively. In Figure 9, we can see some 
slowdown for some of the benchmarks with the wp and wth 
configurations due to the pollution that they cause by bringing never 
needed blocks into the cache and/or evicting some useful blocks in 
L1 data cache.  This cache pollution offsets the benefits of the 
indirect prefetching effect by the wrong-path and wrong-thread 
execution. In Figure 10, the average reduction in L1 data cache 
misses for eight TUs is 6%. From Figures 7 – 10, it is seen that, of 
all of the configurations, wth-wp, which is a combination of wrong-
thread and wrong-path execution, gives the greatest performance 
improvement. 

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

16
4.g

zip

181
.mcf

18
3.e

qu
ake 17

5.v
pr

17
7.m

es
a

197
.pa

rse
r

S
pe

ed
up wp

wth

wth-wp

 
 

Figure 7. Speedup by wrong-path and wrong-thread execution for two 
Thread Units (TUs). The baseline is the orig  configuration with two TUs. 
The L1 data cache is distributed and 8KB for each TU with 32B blocks and 
4-way associativity. 
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Figure 8. The reduction in L1 data cache misses (percent) due to wrong-path 
and wrong-thread execution for two thread units. 
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Figure 9. Speedup due to wrong-path and wrong-thread execution for eight 
thread units (TUs). The baseline is the orig  configuration with eight TUs. 
The L1 data cache is distributed and 8KB for each TU with 32B blocks and 
4-way associativity. 
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Figure 10. The reduction in L1 data cache misses (percent) due to wrong-
path and wrong-thread execution for eight thread units. 
 
5.3 The effect of varying number of thread-processing elements 
(TUs) 
 
Figure 11 shows the normalized execution times for the orig, wp, 
wth, and wth-wp configurations when the number of TUs is varied. 
The original 2TU execution is used as the baseline.  From these 
results we see that 177.mesa does not benefit from thread-level 
parallelism and wrong-thread and wrong-path execution. 175.vpr 
also does not appear to have good thread-level parallelism. The 
remainder of the benchmarks, however, can take advantage of 
increasing the number of thread units to reduce the overall execution 
time.  Additionally, the wth-wp configuration further reduces the 
overall execution time for these benchmark programs. 
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Figure  11. Normalized execution times for various number of thread units 
(2,4,8,16) 
 
5.4 Parameter Sensitivity Analysis 
 
In this section, we study the effects of varying the L1 cache size and 
associativity on the performance of the wth, wp, and wth-wp 
configurations. Each simulation in this section uses eight thread 
units. 
 
5.4.1 L1 data cache size 
 
Figure 12 shows the normalized execution times when the L1 data 
cache size is varied. With a larger L1 data cache, we see that the 
performance increases because of reductions in the number of 
correct path cache misses, which is shown in Figure 14.  As shown 
in Figure 13, the indirect prefetching effect provided by the wth-wp 
configuration can increase performance up to 4.6% (183.equake). As 
the size of cache increases, the speedup tends to reduce.  This 
behavior occurs because, when cache size is increased, the number 
of misses during the wrong execution reduces as well.  As a result, 
there is a smaller prefetching effect which reduces the number of 
misses on the correct path. On the other hand, the larger cache size 
causes fewer correct path misses and less cache pollution due to 
wrong execution, which further decreases the number of misses on 
the correct path. Figure 15 shows that the two trends have different 
tradeoffs on different benchmarks.  
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Figure   12. Normalized execution times with different L1 cache sizes (4K, 
8K, 16K, 32K). 
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Figure  13. Relative speedups for different L1 data cache sizes (4K, 8K, 16K, 
32K). The baseline configuration is chosen to match the corresponding L1 
data cache size. 
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Figure  14. Normalized L1 data cache miss counts on the correct execution 
path with different cache sizes (4K, 8K, 16K, 32K). 
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Figure  15. The relative reduction in the number of misses in the data L1 
cache for different L1 data cache sizes (4K, 8K, 16K, 32K). The baseline 
configuration is chosen to match the corresponding L1 data cache size. 
 
5.4.2 L1 data cache associativity 
 
As the associativity of the L1 cache increases, the benchmark 
performance also tends to increase, as shown in Figure 16. This 
increase is due to a reduction in the number of misses on the correct 
path miss, which is shown in Figure 18. Cache pollution due to the 
wrong execution is significant when the cache associativity is small. 
Although the number of indirect prefetches due to wrong execution 
increases with a smaller associativity, the pollution caused by the 
wrong execution offsets the benefit of the indirect prefetching effect. 
As we can see from Figure 17, the relative speedup from the wrong 
execution increases when the cache associativity increases. In this 
figure, we see speedups up to 4.4%  for 183.equake, for example., 
The number of misses on both the correct path and the wrong path 
decreases when the cache associativity increases. As a result, the 
wrong thread’s indirect prefetching effect is more prominent.  That 
is, wrong execution tends to be more effective in reducing correct 
path misses as cache associativity increases. We conclude that 
eliminating the pollution caused by the execution of mispredicted 
load instructions for the low associativity caches is important to 
increase the benefit from wrong-path and wrong-thread execution. 
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Figure  16. Normalized execution time with different L1 associativities 
(1way, 2way, 4way) 
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Figure  17. Relative speedup for different L1 data cache associativ ities 
(1way, 2way, 4way).  The baseline configuration is chosen to match the 
corresponding L1 data cache associativity. 
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Figure  18. Normalized L1 data cache miss counts for different L1 data cache 
associativities (1way, 2way, 4way). 
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Figure  19. The relative reduction in the number of misses in the data L1 
cache for different L1 data cache associativities (1way, 2way, 4way). The 
baseline configuration is chosen to match the corresponding L1 data cache 
associativity. 
 
5.5 Memory Traffic 
 
As shown in Figure 20, the number of load references to the L1 data 
cache, and the traffic between the L1 and L2 caches, increases due 
to the execution of wrong-path and wrong-thread loads. There is a 
16.5% increase in the number of L1 data cache accesses and a 
10.0% increase in the number of unified L2 cache accesses on 
average. The 164.gzip, 181.mcf, and 183.equake programs originally 
had large L2 cache traffic.  As a result, executing the wrong loads in 
the wth-wp configuration does not add much additional traffic. For 
175.vpr and 197.parser , in contrast, the L2 cache traffic was 
originally relatively small.  Consequently, the additional wrong 
loads executed in with the wth-wp configuration increases the traffic 
by a relatively large amount. 
 

0

5

10

15

20

25

30

35

164.gzip 181.mcf 183.equake 175.vpr 177.mesa 197.parser

Tr
af

fic
 in

cr
ea

se
 (%

)

Data L1

Unified L2

 
 

Figure  20. Changes in the relative L1 and L2 cache traffic due to executing 
wrong loads in the wth-wp configuration compared to the orig configuration 



with an 8K, 4-way associative L1 cache, and a 512K L2 cache when using 8 
thread units.  
 
6 Related Work  
 
Many studies have examined the effect of speculative execution on 
single-thread architectures. Intuitively, speculative execution may 
significantly increase memory traffic. Pierce and Mudge’s [12] 
study shows that this intuition is not necessarily true for 
mispredicted loads from deep speculative execution. On the 
contrary, their study showed that executing these loads may have 
some potential benefits. This previous work did not quantitatively 
evaluate the potential benefits, however. Pierce and Mudge also 
proposed a wrong-path instruction prefetching scheme [13] in which 
instructions from both possible branch paths are prefetched. Their 
result showed that wrong-path prefetching can be surprisingly 
effective in reducing instruction cache misses. Sendag et al [3] 
examined the impact of wrong-path execution on the data cache in a 
single-threaded processor. This study quantified the benefits and 
tradeoffs of wrong path execution. Our speculative execution 
mechanism in this paper is based on a multithreaded architecture, 
which adds inter-thread speculation (wrong-thread execution) to the 
intra-thread speculation (wrong-path execution) of a single-threaded 
processor.  

While there has been no previous work that has examined 
the impact of executing loads from a mispredicted thread in a 
multithreaded architecture, a few studies have examined prefetching 
in the Simultaneous MultiThreading (SMT) architecture. Collins et 
al [6] studied the use of idle thread contexts to perform prefetching 
based on a simulation of the Itanium processor that had been 
extended to perform simultaneous multithreading.  Their approach 
speculatively precomputed future memory accesses using a 
combination of software, existing Itanium processor features, and 
additional hardware support. Similarly, using idle threads on an 
Alpha 21464-like SMT processor to pre-execute speculative 
addresses and thereby prefetch future values to accelerate the main 
thread also has been proposed [14].  

These previous studies differ from our work in this paper 
in several important ways. First, this current study extends these 
previous evaluations of single-threaded and SMT architectures to a 
concurrent multithreading architecture.  Second, our mechanism 
requires only a small amount of extra hardware, which is transparent 
to the processor; no extra software support is needed. 
 
7 Conclusions  
 
In this paper, we examined the effect of executing mispredicted load 
instructions from the wrong-path, and from a wrongly forked thread, 
on the performance of a speculative multithreaded architecture. We 
find that by continuing to execute the mispredicted load instructions, 
we can reduce the misses for subsequent correct execution paths and 
threads. We also find that there is a pollution effect caused by 
bringing never needed blocks into the cache and by evicting useful 
blocks needed for the later correct execution. We show that the 
indirect prefetching effect of wrong execution can improve the 
performance of a concurrent multithreaded architecture as much as 
14%, while reducing the number of misses up to 35%. The low 
associativity caches, on the other hand, although having more 
misses, cannot benefit from the wrong execution as much since the 
cache pollution caused by the wrong execution can offset the 
prefetching effect. In order to get more benefit from wrong 
execution for low-associativity caches, we must eliminate the 
pollution that they cause. This can be done by directing their results 

into a small buffer as is done in [3].  Examination of the 
performance with such a mechanism is left to future work.  
Although this current study is based on a multithreaded architecture 
that exploits loop level parallelism, the ideas presented in this paper 
can be easily used in all types of multithreaded architectures 
executing general workloads.  
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