
The Effect of Executing Mispredicted Load Instructions in a Speculative
Multithreaded Architecture

Resit Sendag, Ying Chen, and David J. Lilja

Department of Electrical and Computer Engineering
Minnesota Supercomputing Institute

University of Minnesota
200 Union St. S.E., Minneapolis, MN 55455, USA

{rsgt, wildfire, lilja}@ece.umn.edu

Abstract. Concurrent multithreaded architectures exploit both instruction-
level and thread-level parallelism in application programs. A single-threaded
sequencing mechanism needs speculative execution beyond conditional
branches in order to exploit more instruction-level parallelism. In addition,
an aggressive multithreaded architecture should also use thread-level control
speculation in order to exploit more thread-level parallelism. The instruction-
and thread-level speculative execution of load instructions in a multithreaded
architecture system has a greater impact on the performance of the cache
hierarchy as the design becomes more aggressive using wider issue
processors and more thread units. In this study, we investigate the effects of
executing the mispredicted load instructions on the cache performance of a
scalable multithreaded computer system. The execution of loads down the
wrongly predicted branch path within a thread unit or in a wrongly forked
thread can result in an indirect prefetching effect for correct execution. This
is possible even after the outcome of a control speculation is known. By
allowing mispredicted load instructions to continue execution even after the
instruction or thread level control speculation is known to have failed, we
show that we can reduce the cache misses for the correctly predicted paths
and threads. However, these additional loads also can increase the amount of
memory traffic and can pollute the cache. Our results show that the
performance of a concurrent multithreaded architecture can be improved as
much as 14%, while reducing the number of L1 data cache misses up to 35%.

1 Introduction

A concurrent multithreaded architecture [1] consists of a number of
thread processing elements (superscalar cores). In each superscalar
processor core, in order to achieve high issue rate, instructions are
speculatively executed beyond basic block-ending conditional
branches until the branches are resolved. If the prediction was
incorrect, the processor state must be restored to the state prior to the
predicted branch and execution must be restarted down the correct
path. Similarly, to increase the amount of overlap between executing
threads, a concurrent multithreaded architecture must aggressively
fork speculative successor threads. If any of the speculated control
dependences are subsequently found to be false, the thread must kill
all the successor threads. With both instruction- and thread-level
control speculation, a multithreaded architecture allows many
memory references to be issued which turn out to be unnecessary
since they are issued from a mispredicted branch path or a
mispredicted thread. However, these incorrectly issued memory
references may produce an indirect prefetching effect by bringing
data or instruction lines into the cache that are needed later by the
execution paths for the correct threads. Unfortunately, these
additional loads also will increase the memory traffic and may
pollute the cache.

Existing superscalar processors with deep pipelines and
wide issue units do allow memory references to be issued
speculatively down wrongly predicted branch paths. This work,
however, proposes to go one step further and examine the effects of
continuing to execute the loads down the mispredicted branch path

even after the branch is resolved. These instructions are marked as
being from the mispredicted branch path so that later they can be
squashed without altering the target register. In this manner, the
processor can continue accessing memory with loads that are known
to be from the wrong branch path. At the thread-level, control
speculation allows speculative execution of threads. The load
instructions issued before the speculation is cleared can affect the
cache behavior. In this work, the wrongly predicted threads are
allowed to execute instead of being killed. They are marked as
wrong threads and are killed when a thread finds itself to be wrongly
predicted, or the next parallel region needs to be started. As a result,
the wrong threads’ execution is overlapped with the execution of the
sequential code. This continued execution of incorrectly speculated
threads allows more loads to be executed than would execute if the
threads were killed at the earliest point at which they are known to
be incorrect.

Although this technique issues load instructions very
aggressively to produce a significant impact on cache behavior, it
has little impact on the implementation of the processor's pipeline
and control logic. The execution of wrong-path or wrong-thread
loads can make a significant performance improvement with very
low overhead when there exists a large disparity between the
processor cycle time and the memory speed. However, executing
these loads can reduce performance in systems with small data
caches and low associativities due to cache pollution.

The remainder of the paper is organized as follows.
Section 2 presents an overview of SuperThreaded Architecture [2, 8]
(STA), which is the concurrent multithreaded architecture used for
this study. Section 3 describes the idea of wrong execution. The
experimental methodology is described in Section 4 with the results
given in Section 5. Section 6 discusses some related work and
Section 7 concludes.

2 The SuperThreaded Architecture (STA)

2.1 Architecture Model

In its general form, the superthreaded architecture (STA) consists of
multiple thread processing units. Each unit is connected to its
successor by a unidirectional ring, as shown in Figure 1. The thread
processing units share the second-level (L2) instruction and data
cache. Each unit has a private level-one instruction cache, private or
shared level-one data cache, program counter, register file, and
execution unit. There also is a shared register file that maintains
some global data registers and lock registers. A private memory
buffer is used in each thread processing unit to cache speculative
stores to support run-time data dependence checking.

When multiple threads are executing on the STA, the
oldest thread in the sequential order is called the head thread. All

other threads derived from it are called successor threads. The
program execution starts from its entry thread while all other thread
units are idle. When a parallel code region is encountered, this
thread activates its downstream thread by forking. This forking
continues until no thread unit is idle. Then, the youngest thread
waits to fork until the head thread retires and the thread unit on
which it was executing become idle. As soon as the head thread
retires, a new thread is activated. This cycle of idle-active-execute-
idle continues until the end of parallel region

Level 2 Instruction Cache

Level 2 Data Cache

Thread Processing Unit

Execution Unit

Level 1 Instruction Cache

Register File

LSU ALU FPU

Communication Unit

Memory Buffer

Writeback Unit

Level 1 Data
Cache

Thread Processing Unit

Execution Unit

Level 1 Instruction Cache

Register File

LSU ALU FPU

Communication Unit

Memory Buffer

Writeback Unit

Level 1 Data
Cache

Thread Processing Unit

Execution Unit

Level 1 Instruction Cache

Register File

LSU ALU FPU

Communication Unit

Memory Buffer

Writeback Unit

Level 1 Data
Cache

Thread Processing Unit

Execution Unit

Level 1 Instruction Cache

Register File

LSU ALU FPU

Communication Unit

Memory Buffer

Writeback Unit

Level 1 Data
Cache

Figure 1. The STA with four threads units.

2.2 Thread Pipelining Execution Model

The execution model for the STA is thread pipelining. This
execution model allows threads with data and control dependences
to be executed in parallel. Instead of speculating on data
dependences, it facilitates run-time data dependence checking for
load instructions. Thus, it avoids the squashing caused by data
dependence violations and reduces the hardware complexity of
detecting memory dependence violations compared to some prior
CMA models [4], [5]. As shown in Figure 2, the execution of a
thread is partitioned into the continuation stage, the target-store
address-generation (TSAG) stage, the computation stage, and the
write-back stage.

The main function of the continuation stage is to compute
recurrence variables (e.g. loop index variables), and to fork a new
thread on the next thread-processing element. This stage ends with a
fork instruction, which forwards the recurrence variables, as well as
the target store addresses and data received from the predecessor
threads, to the next thread. A thread can fork a successor thread with
or without speculation. If the speculation is ultimately determined to
be incorrect, the thread will issue an abort instruction to kill the
successor threads. The continuation stages of two adjacent threads
can never overlap.

The TSAG stage performs address computations for those
stores that may have data dependences on later concurrent threads.
These stores, which are called target stores, are identified through a
conventional data dependence analysis. The computed addresses are
stored in a special memory buffer in each thread unit and forwarded
to the memory buffers of all succeeding concurrent thread units.

The computation stage contains the computation from the
body of the loop. Reads of data that have cross-iteration
dependences are checked against the addresses and values in the
memory buffer. If valid data has not yet arrived from an upstream

thread, the out-of-order STA core will execute instructions that are
independent of the load that is waiting for the upstream data.

In the write-back stage, all the data in the memory buffer,
including the values of the target stores, will be committed and
written to the cache. The write-back stages are performed in the
original program order to preserve the non-speculative memory state
and to eliminate output and anti-dependences between threads. After
performing the write-back stage, a thread-processing unit can retire
the thread. It then becomes idle until it is again scheduled with a
new thread.

Continuation
Stage

TSAG Stage

Computation
Stage

Write-Back
Stage

WB_DONE flag

Fork & forward
continuation variables

TSAG_DONE flag

target store addr.

target store
addr.&data

Continuation
Stage

TSAG Stage

Computation
Stage

Write-Back
Stage

WB_DONE flag

Fork & forward
continuation variables

TSAG_DONE flag

target store addr.

target store
addr.&data

Continuation
Stage

TSAG Stage

Computation
Stage

Write-Back
Stage

Fork & forward
continuation variables

TSAG_DONE flag

target store addr.

target store
addr.&data

Thread 1

Thread 2

Thread 3

Figure 2. Thread pipelining execution model.

2.3 Compilation process for superthreaded code

All the benchmarks in this study were parallelized manually. First,
the gprof tool from the GNU suite of Unix tools was used to gather a
function-level execution profile. Since these profiles do not provide
loop-level details, tcov, also from the GNU suite of Unix tools, was
used to gather profiles for basic blocks. After choosing the most
time-consuming loops in each program, the special superthreaded
instructions are inserted by hand to parallelize those loops. The GCC
compiler from the Simplescalar suite of tools was used to compile
the superthreaded programs. The compiler was modified to
transform function calls to jump-to-label instructions. A special-
purpose parser then was used to replace the function calls with the
superthreaded instructions. Finally, the superthreaded assembly code
is fed into the Simplescalar GAS assembler and GAD loader to
produce the executable binary code. Figure 3 shows the complete
compilation process.

Source code with
Superthreaded
function calls

Assembling code
with junp-to-label

instructions

Assembly code with
Superthreaded

instructions

Superthreaded
binary ready to be
simulated with

SIMCA simulator

Simplescalar-
GCC compiler

Replace utility
for

bachpatching

Simplescalor-
GAS

assembler

Figure 3. The compilation process for producing superthreaded code.

3 Wrong Execution on the STA

There are two types of wrong execution that can occur in a
concurrent multithreaded architecture such as the superthreaded
architecture. The first type occurs when instructions continue to be
issued down the path of what turns out to be an incorrectly-predicted
conditional branch instruction within a single thread. We refer to
this type of execution as wrong path execution. The second type of
wrong execution occurs when instructions are executed from a
thread that was speculatively forked, but is subsequently aborted.
We refer to this type of incorrect execution as wrong thread

execution. Our interest in this study is to examine the effects on the
memory hierarchy of load instructions that are issued from both of
these types of wrong executions.

3.1. Wrong Path Execution

Loads on wrongly predicted branches that are not ready to be issued
before the branch is resolved, either because they are waiting for the
effective address calculation or for an available memory port, are
issued to the memory system if they become ready after the branch
is resolved, even though they are known to be from the wrong path.
Instead of being squashed after the branch is resolved, they are
allowed to access the memory. These instructions are marked as
being from the mispredicted branch path when they are issued so
they can be squashed in the write-back stage of the processor
pipeline to prevent them from altering the destination register after
they access the memory system. Note that a wrong-path load that is
dependent upon another instruction that gets flushed after the branch
is resolved also is flushed in the same cycle. In this manner, the
processor is allowed to continue accessing memory with loads that
are known to be from the wrong branch path. No store instructions
are allowed to alter the memory system, however, since they are
known to be invalid. The stores that are known to be down the
wrong path after the branch is resolved are not executed thereby
eliminating the need for an additional speculative write buffer.
 An example showing the difference between speculative
and wrong-path execution is given in Figure 4. In this example,
there are five loads (A, B, C, D, and E) fetched down the predicted
path. Loads A and B become ready and are issued to the memory
system speculatively before the branch is resolved. After the branch
result is known to be wrong, the other three loads, C, D and E, are
squashed before being able to access the memory system. In a
system with wrong-path execution, however, loads, which become
ready, are allowed to continue execution (loads C and D in Figure 4)
in addition to the speculatively executed loads (loads A and B).
Since they are marked as being from the wrong-path, loads C and D
are squashed later in the pipeline so that they will not alter the
destination register. Since load E is not ready to execute by the time
the branch is resolved, it is squashed as soon as the branch result is
known.

Ld A
Ld B

Ld C
Ld D

Ld E

Prediction
result is wrong

Predicted path

Correct path

Wrong path

Speculative execution

Wrong path execution

Not ready to be executed

C P

WP

Figure 4. The difference between speculative and wrong-path execution.

3.2 Wrong Thread Execution

The superthreaded execution model must be changed to support
wrong thread execution. As described in Section 2, when a thread
determines that the iteration it is executing satisfies the loop exit
condition, it executes an abort instruction to kill all the successor
threads. In this study, however, instead of killing them, the

successor threads are marked as wrong threads when the head
thread executes an abort. These specially marked threads are not
allowed to fork new threads, yet they are allowed to continue
execution. As a result, after this parallel region finishes, the wrong
threads continue execution in parallel with the following sequential
code. Later, when the wrong threads attempt to execute their own
abort instructions, they kill themselves before their write-back
stages.

If the sequential region between two parallel regions is not
long enough for the wrong threads to determine that they are to be
aborted before the beginning of the next parallel region, the begin
instruction that initiates the next parallel region will abort all of the
still-executing wrong threads from the previous parallel region so
that the head thread is able to fork without stalling. Since each
thread’s store data is put in a speculative memory buffer, and since
wrong threads cannot execute their write-back stages, no wrong
thread store data alters any data in the cache. The loads from wrong-
thread execution will bring data from lower levels of the memory as
in wrong-path execution and may have an indirect prefetching effect
for later correct threads. However, these wrong-thread loads can
pollute the cache as well. Figure 5 shows the wrong thread
execution model with four thread units. Although wrong-path and
wrong-thread execution has similarities, the main difference
between them is that, once a branch is resolved, the loads that are
not yet ready to execute on a wrong path are squashed, while wrong-
thread loads are allowed to continue their execution.

TU0

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

BEGIN

TU1

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU2

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU1

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU2

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU3

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU0

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU3

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

WTH WTH

BEGIN

Mark the successor
threads to be wrong
threads

Kill all the wrong threads
from the previous parallel
region

Wrong thread kills itsellf

Sequential Execution

Parallel Execution

Figure 5. Wrong thread execution model with four thread units

4. Experimental Methodology

This study uses SIMCA [7] (SImulator for Multithreaded Computer
Architecture) to model the performance effects of wrong-execution
on the superthreaded architecture. This simulator is based on version
3.0 of SimpleScalar’s sim-outorder functional and timing simulator
[9].

For all of the simulations in this study, each thread unit
uses a 4-way associative branch target buffer of 1024 entries and a
fully associative memory buffer of 128 entries. Distributed L1
instruction caches are each 32KB, 2-way associative. The default
unified L2 cache is 512KB, 4-way associative with a block size of
128 bytes, unless explicitly mentioned otherwise. The L1 and L2
cache latencies are 1 and 12 cycles, respectively. The round-trip
memory latency on a cache miss is 200 cycles.

The time required to initiate a new thread (the fork delay)
in the superthreaded architecture includes the time required to copy
all of the needed global registers to a newly spawned thread’s local
register file and the time required to forward the program counter
and the necessary target-store addresses from the memory buffer.
We use a fork delay of four cycles [2] in this study plus two cycles
per value to transfer data between threads after a thread has been
forked.

 4.1. Benchmark Programs

Four SPEC2000 integer benchmark programs (gzip, vpr, parser,
mcf) and two SPEC2000 floating point benchmark programs
(equake, mesa) are evaluated in this study. All of them are written in
C.

Some simple complier techniques were used during the
parallelization of these benchmark programs, as summarized in
Table 1. Each benchmark was compiled with the O3 optimization
level and run to completion. To keep the simulation times
reasonable, the MinneSPEC [11] reduced input sets were used for
several of the benchmark programs, as shown in Table 2. This table
also shows the fraction of the code that was parallelized for each
program.

Table 1. Program transformations used in manually transforming the code to
the thread-pipelining execution model.

Transformations

16
4.

gz
ip

17
5.

vp
r

19
7.

pa
rs

er

18
1.

m
cf

18
3.

eq
ua

ke

17
7.

m
es

a

Loop Coalescing a

Loop Unrolling a a a

Statement Reordering to Increase Overlap a a a a

Table 2. The dynamic instruction counts of the benchmark programs used in
this study, and the fraction of these instructions that were executed in
parallel.

4.2. Processor Configurations

The following STA configurations were simulated to determine the
performance impact of executing wrong-path and wrong-thread
loads.

orig: This is the baseline STA explained in the previous
sections. Note that the STA allows speculative execution of loads
until the control speculation result is known. The results for these
loads are speculatively put in the L1 data cache. After the
misprediction is known, the processor state is restored to the state
prior to the predicted branch. The execution then is restarted down
the correct path. In addition, the forking thread immediately kills
wrong threads after the speculation is cleared.

wp: This configuration adds more aggressive speculation
to a thread unit’s execution. The processor allows as many fetched

loads as possible to access the memory system regardless of the
predicted direction of conditional branches. This configuration is a
good test of how the execution of the loads down the wrong branch
path affects the memory system. Note that, in contrast to the orig
configuration, the loads down the mispredicted branch direction are
allowed to continue execution even after the branch is resolved.
However, they are squashed before being allowed to write to the
destination register. Wrong-path stores are not allowed to execute in
this configuration to eliminate the need for an additional speculative
write buffer. Stores are squashed as soon as the branch result is
known. The thread-level speculation, however, remains the same as
in configuration orig.

wth: This configuration is described in detail in Section
3.2. To summarize, a speculatively forked thread is allowed to
continue execution even after it is known to be mispredicted. Wrong
threads are squashed before they reach their write-back stage of the
thread-execution pipeline to prevent wrongly executed loads from
altering the target register after they access the memory system.
Since each thread’s store data is put in a private local memory buffer
during a thread’s execution, and wrong threads cannot execute their
write-back stages, no wrong thread store data alters the cache. The
speculative load execution within a thread unit (i.e., the superscalar
core) remains the same as in the orig configuration.

wth-wp: This is a combination of the wp and wth
configurations.

5. Simulation Results

The simulation results are presented as follows. First, the baseline
performance of the STA is given. Next, the effects of wrong-thread
and wrong-path execution on the performance of the superthreaded
architecture are examined. Finally, several important memory
system parameters are varied to determine the sensitivity of the
system to these parameters.

The overall execution time is used for the performance
metric in this study. Average speedups are calculated by using the
execution time weighted average of all of the benchmarks [10].

5.1 Baseline Performance of the STA

The system parameters used to determine the amount of parallelism
exploited in the benchmark programs used in this study, and to
determine the baseline performance of the STA, are shown in Table
3. The size of the distributed 4-way set-associative L1 data cache
size is scaled from 2K to 32K as the number of threads is varied to
keep the same total amount of L1 cache in the system. The processor
of a single thread unit (1TU) corresponds to a superscalar processor
that exploits only instruction-level parallelism. The 16TU
configuration, on the other hand, corresponds to a superthreaded
architecture that can issue only a single instruction per cycle within
each thread unit. Thus, this configuration exploits only thread-level
parallelism. The baseline for these initial comparisons is a single-
thread, single-issue processor that does not exploit any parallelism.

Table 3. Simulation parameters used for each thread unit .

of TUs
Issue rate

1
1

1
16

2
8

4
4

8
2

16
1

Reorder buffer size 8 128 64 32 16 8
INT ALU 1 16 8 4 2 1
INT MULT 1 8 4 2 1 1
FP ALU 1 16 8 4 2 1
FP MULT 1 8 4 2 1 1
L1 data cache size (K) 2 32 16 8 4 2

Benchmark Suite/Type Input Set Whole
Benchmark
Instruction
(M)

Targeted
loops
Instruction
(M)

Fraction
Parallelized

164.gzip SPEC2000/INT MinneSPEC
large

1550.7 243.6 15.7%

175.vpr SPEC2000/INT SPEC test 1126.5 97.2 8.6%
197.parser SPEC2000/INT MinneSPEC

med.
514.0 88.6 17.2%

181.mcf SPEC2000/INT MinneSPEC
large

601.6 217.3 36.1%

183.equake SPEC2000/FP MinneSPEC
large

716.3 152.6 21.3%

177.mesa SPEC2000/FP SPEC test 1832.1 319.0 17.3%

Figure 6 shows the amount of instruction- and thread-level
parallelism in the parallelized portions of the benchmarks to thereby
compare the superthreaded processor with a conventional processor.
In the baseline simulations, 164.gzip shows high thread-level
parallelism with a speedup of 14x for the 16TU X 1-issue
configuration, while a 1TU X 16-issue processor gives a speedup
less than 4x. The speedup of the parallelized portions of 175.vpr
becomes worse as the number of threads is increased because
175.vpr does not have much thread-level parallelism available. In
the cases where the pure superscalar model achieves the best
performance, the clock cycle time of this configuration is likely to
be longer than the combined models or the pure superthreaded
model since a 16-issue superscalar model must use a large
instruction reorder buffer for dynamic instruction scheduling.

0

2

4

6

8

10

12

14

16

164
.gz

ip

181
.mcf

183
.eq

uak
e

175
.vp

r

177
.mesa

197
.pa

rse
r

ave
rag

e

sp
ee

du
p

1TPU
2TPU

4TPU
8TPU
16TPU

Figure 6. Performance for the transformed portion of superthreaded
processors with the hardware configurations shown in Table 3. The baseline
configuration is a single-thread, single-issue processor.

5.2. Performance of the Superthreaded Architecture with
Wrong-Path and Wrong-Thread Execution

The overall speedups for the benchmarks under test when using
wrong-path and wrong-thread execution are given in Figures 7 and 8
for two and eight thread units (TUs), respectively. The speedups are
given over the baseline (orig) configuration. In Figure 7, for two
TUs, the wth-wp configuration can result in a 14% performance
improvement (for 181.mcf). This improvement is due to the
reduction in the number of correct-path and correct-thread misses
that occur by continuing to execute the mispredicted load
instructions down the wrong-path and wrong-threads. Figure 8
shows the percent reduction in the number of misses down the
correct execution path (i.e., within the correctly predicted thread’s
execution). We can see that for 181.mcf, wth-wp can reduce the
number of misses in the L1 data cache by 35%. The average
reduction in the number of L1 data cache misses over all of the
benchmark programs is 12.6%.

Figures 9 and 10 show the speedup and miss reduction
results for eight TUs, respectively. In Figure 9, we can see some
slowdown for some of the benchmarks with the wp and wth
configurations due to the pollution that they cause by bringing never
needed blocks into the cache and/or evicting some useful blocks in
L1 data cache. This cache pollution offsets the benefits of the
indirect prefetching effect by the wrong-path and wrong-thread
execution. In Figure 10, the average reduction in L1 data cache
misses for eight TUs is 6%. From Figures 7 – 10, it is seen that, of
all of the configurations, wth-wp, which is a combination of wrong-
thread and wrong-path execution, gives the greatest performance
improvement.

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

16
4.g

zip

181
.mcf

18
3.e

qu
ake 17

5.v
pr

17
7.m

es
a

197
.pa

rse
r

S
pe

ed
up wp

wth

wth-wp

Figure 7. Speedup by wrong-path and wrong-thread execution for two
Thread Units (TUs). The baseline is the orig configuration with two TUs.
The L1 data cache is distributed and 8KB for each TU with 32B blocks and
4-way associativity.

-5

0

5
10

15

20

25
30

35

40

164
.gz

ip
181

.mcf

183
.equ

ake
175

.vp
r

177
.mesa

197
.par

ser
%

 D
at

a
L1

 m
is

s
re

du
ct

io
n

wp

wth

wth-wp

Figure 8. The reduction in L1 data cache misses (percent) due to wrong-path
and wrong-thread execution for two thread units.

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

164.gzip 181.mcf 183.equake 175.vpr 177.mesa 197.parser

wp

wth

wth-wp

Figure 9. Speedup due to wrong-path and wrong-thread execution for eight
thread units (TUs). The baseline is the orig configuration with eight TUs.
The L1 data cache is distributed and 8KB for each TU with 32B blocks and
4-way associativity.

-10

- 5

0

5

10

15

20

25

164.gzip 181.mcf 183.equake 175.vpr 177.mesa 197.parser

wp

wth

wth-wp

Figure 10. The reduction in L1 data cache misses (percent) due to wrong-
path and wrong-thread execution for eight thread units.

5.3 The effect of varying number of thread-processing elements
(TUs)

Figure 11 shows the normalized execution times for the orig, wp,
wth, and wth-wp configurations when the number of TUs is varied.
The original 2TU execution is used as the baseline. From these
results we see that 177.mesa does not benefit from thread-level
parallelism and wrong-thread and wrong-path execution. 175.vpr
also does not appear to have good thread-level parallelism. The
remainder of the benchmarks, however, can take advantage of
increasing the number of thread units to reduce the overall execution
time. Additionally, the wth-wp configuration further reduces the
overall execution time for these benchmark programs.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

164.gzip 181.mcf 183.equake 175.vpr 177.mesa 197.parser

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

2TUorg

2TUwth-wp

4TUorg

4TUwth-wp

8TUorg

8TUwth-wp

16TUorg

16TUwth-wp

Figure 11. Normalized execution times for various number of thread units
(2,4,8,16)

5.4 Parameter Sensitivity Analysis

In this section, we study the effects of varying the L1 cache size and
associativity on the performance of the wth, wp, and wth-wp
configurations. Each simulation in this section uses eight thread
units.

5.4.1 L1 data cache size

Figure 12 shows the normalized execution times when the L1 data
cache size is varied. With a larger L1 data cache, we see that the
performance increases because of reductions in the number of
correct path cache misses, which is shown in Figure 14. As shown
in Figure 13, the indirect prefetching effect provided by the wth-wp
configuration can increase performance up to 4.6% (183.equake). As
the size of cache increases, the speedup tends to reduce. This
behavior occurs because, when cache size is increased, the number
of misses during the wrong execution reduces as well. As a result,
there is a smaller prefetching effect which reduces the number of
misses on the correct path. On the other hand, the larger cache size
causes fewer correct path misses and less cache pollution due to
wrong execution, which further decreases the number of misses on
the correct path. Figure 15 shows that the two trends have different
tradeoffs on different benchmarks.

0.75

0.8

0.85

0.9

0.95

1

164.gzip 181.mcf 183.equake 175.vpr 177.mesa 197.parser

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e org 4K

org 8K

org 16K

org 32K

wth-wp 4K

wth-wp 8K

wth-wp 16K

wth-wp 32K

Figure 12. Normalized execution times with different L1 cache sizes (4K,
8K, 16K, 32K).

-1

0

1

2

3

4

5

164.gzip 181.mcf 183.equake 175.vpr 177.mesa 197.parser

re
la

tiv
e

sp
ee

du
p

(%
)

wth-wp 4K

wth-wp 8K

wth-wp 16K

wth-wp 32K

Figure 13. Relative speedups for different L1 data cache sizes (4K, 8K, 16K,
32K). The baseline configuration is chosen to match the corresponding L1
data cache size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

164.gzip 181.mcf 183.equake 175.vpr 177.mesa 197.parser

N
or

m
al

iz
ed

 D
at

a
L1

 m
is

s
co

un
ts org 4K

org 8K

org 16K

org 32K

wth-wp 4K

wth-wp 8K

wth-wp 16K

wth-wp 32K

Figure 14. Normalized L1 data cache miss counts on the correct execution
path with different cache sizes (4K, 8K, 16K, 32K).

-81.69
-20

-15

-10

-5

0

5

10

15

20

25

30

164.gzip 181.mcf 183.equake 175.vpr 177.mesa 197.parser

re
ti

ve
 D

at
a

L
1

m
is

s
co

u
n

t
re

d
u

ct
io

n
 (

%
)

wth-wp 4K

wth-wp 8K

wth-wp 16K

wth-wp 32K

Figure 15. The relative reduction in the number of misses in the data L1
cache for different L1 data cache sizes (4K, 8K, 16K, 32K). The baseline
configuration is chosen to match the corresponding L1 data cache size.

5.4.2 L1 data cache associativity

As the associativity of the L1 cache increases, the benchmark
performance also tends to increase, as shown in Figure 16. This
increase is due to a reduction in the number of misses on the correct
path miss, which is shown in Figure 18. Cache pollution due to the
wrong execution is significant when the cache associativity is small.
Although the number of indirect prefetches due to wrong execution
increases with a smaller associativity, the pollution caused by the
wrong execution offsets the benefit of the indirect prefetching effect.
As we can see from Figure 17, the relative speedup from the wrong
execution increases when the cache associativity increases. In this
figure, we see speedups up to 4.4% for 183.equake, for example.,
The number of misses on both the correct path and the wrong path
decreases when the cache associativity increases. As a result, the
wrong thread’s indirect prefetching effect is more prominent. That
is, wrong execution tends to be more effective in reducing correct
path misses as cache associativity increases. We conclude that
eliminating the pollution caused by the execution of mispredicted
load instructions for the low associativity caches is important to
increase the benefit from wrong-path and wrong-thread execution.

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1
1.02

16
4.g

zip

181
.mcf

183
.eq

uak
e

17
5.v

pr

177
.mesa

19
7.p

ars
er

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

org 1way

org 2way

org 4way

wth-wp 1way

wth-wp 2way

wth-wp 4way

Figure 16. Normalized execution time with different L1 associativities
(1way, 2way, 4way)

-1

0

1

2

3

4

5

164.gzip 181.mcf 183.equake 175.vpr 177.mesa 197.parser

re
la

tiv
e

sp
ee

du
p

(%
)

wth-wp 1way

wth-wp 2way

wth-wp 4way

Figure 17. Relative speedup for different L1 data cache associativ ities
(1way, 2way, 4way). The baseline configuration is chosen to match the
corresponding L1 data cache associativity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

164
.gz

ip

181
.mcf

183
.eq

uak
e

175
.vp

r

177
.mesa

197
.pa

rse
r

no
rm

al
ize

d
L1

 c
ac

he
 m

is
s

co
un

ts

org 1way

org 2way

org 4way

wth-wp 1way

wth-wp 2way

wth-wp 4way

Figure 18. Normalized L1 data cache miss counts for different L1 data cache
associativities (1way, 2way, 4way).

0

2

4

6

8

10

12

14

16

18

20

164.gzip

181
.mcf

183
.eq

uak
e

175
.vp

r

177
.mesa

197
.pa

rse
r

re
lat

ive
 m

iss
 co

un
t r

ed
uc

tio
n

(%
)

wth-wp 1way

wth-wp 2way

wth-wp 4way

Figure 19. The relative reduction in the number of misses in the data L1
cache for different L1 data cache associativities (1way, 2way, 4way). The
baseline configuration is chosen to match the corresponding L1 data cache
associativity.

5.5 Memory Traffic

As shown in Figure 20, the number of load references to the L1 data
cache, and the traffic between the L1 and L2 caches, increases due
to the execution of wrong-path and wrong-thread loads. There is a
16.5% increase in the number of L1 data cache accesses and a
10.0% increase in the number of unified L2 cache accesses on
average. The 164.gzip, 181.mcf, and 183.equake programs originally
had large L2 cache traffic. As a result, executing the wrong loads in
the wth-wp configuration does not add much additional traffic. For
175.vpr and 197.parser , in contrast, the L2 cache traffic was
originally relatively small. Consequently, the additional wrong
loads executed in with the wth-wp configuration increases the traffic
by a relatively large amount.

0

5

10

15

20

25

30

35

164.gzip 181.mcf 183.equake 175.vpr 177.mesa 197.parser

Tr
af

fic
 in

cr
ea

se
 (%

)

Data L1

Unified L2

Figure 20. Changes in the relative L1 and L2 cache traffic due to executing
wrong loads in the wth-wp configuration compared to the orig configuration

with an 8K, 4-way associative L1 cache, and a 512K L2 cache when using 8
thread units.

6 Related Work

Many studies have examined the effect of speculative execution on
single-thread architectures. Intuitively, speculative execution may
significantly increase memory traffic. Pierce and Mudge’s [12]
study shows that this intuition is not necessarily true for
mispredicted loads from deep speculative execution. On the
contrary, their study showed that executing these loads may have
some potential benefits. This previous work did not quantitatively
evaluate the potential benefits, however. Pierce and Mudge also
proposed a wrong-path instruction prefetching scheme [13] in which
instructions from both possible branch paths are prefetched. Their
result showed that wrong-path prefetching can be surprisingly
effective in reducing instruction cache misses. Sendag et al [3]
examined the impact of wrong-path execution on the data cache in a
single-threaded processor. This study quantified the benefits and
tradeoffs of wrong path execution. Our speculative execution
mechanism in this paper is based on a multithreaded architecture,
which adds inter-thread speculation (wrong-thread execution) to the
intra-thread speculation (wrong-path execution) of a single-threaded
processor.

While there has been no previous work that has examined
the impact of executing loads from a mispredicted thread in a
multithreaded architecture, a few studies have examined prefetching
in the Simultaneous MultiThreading (SMT) architecture. Collins et
al [6] studied the use of idle thread contexts to perform prefetching
based on a simulation of the Itanium processor that had been
extended to perform simultaneous multithreading. Their approach
speculatively precomputed future memory accesses using a
combination of software, existing Itanium processor features, and
additional hardware support. Similarly, using idle threads on an
Alpha 21464-like SMT processor to pre-execute speculative
addresses and thereby prefetch future values to accelerate the main
thread also has been proposed [14].

These previous studies differ from our work in this paper
in several important ways. First, this current study extends these
previous evaluations of single-threaded and SMT architectures to a
concurrent multithreading architecture. Second, our mechanism
requires only a small amount of extra hardware, which is transparent
to the processor; no extra software support is needed.

7 Conclusions

In this paper, we examined the effect of executing mispredicted load
instructions from the wrong-path, and from a wrongly forked thread,
on the performance of a speculative multithreaded architecture. We
find that by continuing to execute the mispredicted load instructions,
we can reduce the misses for subsequent correct execution paths and
threads. We also find that there is a pollution effect caused by
bringing never needed blocks into the cache and by evicting useful
blocks needed for the later correct execution. We show that the
indirect prefetching effect of wrong execution can improve the
performance of a concurrent multithreaded architecture as much as
14%, while reducing the number of misses up to 35%. The low
associativity caches, on the other hand, although having more
misses, cannot benefit from the wrong execution as much since the
cache pollution caused by the wrong execution can offset the
prefetching effect. In order to get more benefit from wrong
execution for low-associativity caches, we must eliminate the
pollution that they cause. This can be done by directing their results

into a small buffer as is done in [3]. Examination of the
performance with such a mechanism is left to future work.
Although this current study is based on a multithreaded architecture
that exploits loop level parallelism, the ideas presented in this paper
can be easily used in all types of multithreaded architectures
executing general workloads.

Acknowledgment

This work was supported in part by National Science Foundation
grants EIA-9971666 and CCR-9900605, IBM, Compaq's Alpha
Development Group, and the Minnesota Supercomputing Institute.

References

[1] Theo Ungerer, Borut Robic ad Jurij Silc. “Multithreaded Processors”. The

Computer Journal, Vol.45, No.3, 2002
[2] Jenn-Yuan Tsai, Jian Huang, Christoffer Amlo, David J. Lilja, and Pen-

Chung Yew, “The Superthreaded Processor Architecture”. IEEE
Transactions on Computers, Special Issue on Multithreaded Architectures
and Systems, September, 1999.

[3] Resit Sendag, David J. Lilja, and Steven R. Kunkel. “Exploiting the
Prefetching Effect Provided by Executing Mispredicted Load Instructions”.
ACM Euro-Par Conference, August, 2002.

[4] G.S. Sohi, S.E. Breach, and T.N. Vijaykumar. “Multiscalar processors”
International Symposium on Computer Architecture, pages 414-425,
June22-24, 1995

[5] J.G. Steffan and T.C. Mowry. “The potential for thread-level data
speculation in tightly-coupled multiprocessors” Technical report CSRI-TR-
350, Computer Science Research Institute, University of Toronto, February
1997. .

[6] J.D. Collins, H. Wang, D.M. Tullsen, C. Hughes, Y -F. Lee, D. Lavery, J.P.
Shen. “Speculative Precomputation: Long-range Prefetching of Delinquent

Loads”, International Symposium on Computer Architecture , July 2001.
[7] Jian Huang, “The SImulator for Multithreaded Computer Architecture”,

Laboratory for Advanced Research in Computing Technology and
Compilers Technical Report No. ARCTiC 00-05, June, 2000.

[8] J-Y. Tsai, Z. Jiang, E. Ness and P-C Yew. “Performance Study of a
Concurrent Multithreaded Processor”, International Symposium on High-
Performance Computer Architecture , Feb. 1998.

[9] D.C. Burger, T.M. Austin, and S. Bennett, “Evaluating future
Microprocessors: The SimpleScalar Tool Set,” Technical Report CS -TR-
96-1308, University of Wisconsin-Madison, July 1996.

[10] David J. Lilja, “Measuring Computer Performance”, Cambridge University
Press, 2000

[11] AJ KleinOsowski, and D. J. Lilja “ MinneSPEC: A New SPEC Benchmark
Workload for Simulation-Based Computer Architecture Research”,
Computer Architecture Letters, Volume 1, May 2002.

[12] J. Pierce and T. Mudge, “The effect of speculative execution on cache
performance”, IPPS 94, Int. Parallel Processing Symp., Cancun Mexico,
pp. 172-179, Apr. 1994

[13] J. Pierce and T. Mudge, “Wrong-Path Instruction Prefetching”, IEEE/ACM
Symp. Microarchitecture (MICRO-29), Dec. 1996, pp. 165-175

[14] H. K. Luk, “Tolerating memory latency through software-controlled pre-
execution in simultaneous multithreading processors” International
Symposium on Computer Architecture, 2001

